home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Internet Surfer 2.0
/
Internet Surfer 2.0 (Wayzata Technology) (1996).iso
/
pc
/
text
/
mac
/
faqs.031
< prev
next >
Wrap
Text File
|
1996-02-12
|
29KB
|
624 lines
Frequently Asked Questions (FAQS);faqs.031
Also note that, contrary to popular belief in the U.S. (and in
some parts of Canada), Canada is not a wholly-owned subsidiary
of the U.S. Consequently, the NEC does not apply in Canada.
Lots of things are the same, including voltages, line
frequencies, and the laws of physics. But there are a number
of crucial differences in the regulations. Where we can, we've
noted them, flagging the relevant passages with ``NEC'' or
``CEC''.
Remember that the CEC and NEC are minimal standards. It is often
smart to go beyond their minimal requirements.
Subject: What is the NEC? Where can I get a copy?
The NEC is a model electrical code devised and published by the
National Fire Protection Association, an insurance industry group.
It's revised every three years. The 1993 version will be
released in September, 1992. You can buy a copy at a decent
bookstore, or by calling them directly at 800-344-3555. The
code exists in several versions. There's the full text, which
is fairly incomprehensible. There's an abridged edition, which
has only the sections likely to apply to most houses. And
there's the NEC Handbook, which contains the ``authorized
commentary'' on the code, as well as the full text. That's the
recommended version. Unfortunately, there's no handbook for
the abridged edition. And the full handbook is expensive --
US$65 plus shipping and handling.
Subject: What is the CEC? Where can I get a copy?
The Canadian Standards Association is an organization made up
of various government agencies, power utilities, insurance
companies, electrical manufacturers and other organizations.
The CSA publishes CSA Standard C22.1 which is updated every two
or three years. Each province adopts, with some amendments,
this standard and publishes a province-specific code book.
Since each province publishes its own slightly modified
standard, it would be somewhat confusing to obtain the CSA
standard itself. In this FAQ, "CEC" really means the
appropriate provincial standard. In particular, this FAQ is
derived from the Ontario Hydro Electrical Safety Code, 20th
edition (1990). Which is in turn based on CSA C22.1-1990 (16th
edition). While differences exist between the provinces, an
attempt has been made to avoid specific-to-Ontario detail.
The appropriate provincial code can be obtained from electrical
inspection offices of your provincial power authority. In
Ontario, it's Ontario Hydro. The Ontario Hydro book isn't
overly fat. It's about C$25, and includes mailed updates. I
hear that these standards are somewhat easier to read than the
equivalent NEC publications.
Don't bother asking in Quebec - DIY wiring is banned throughout
the province.
Subject: Can I do my own wiring? Extra pointers?
In most places, homeowners are allowed to do their own wiring.
In some, they're not. Check with your local electrical
inspector. Most places won't permit you to do wiring on other's
homes for money without a license. Nor are you permitted to do
wiring in "commercial" buildings. Multiple dwellings (eg: duplexes)
are usually considered "semi-commercial" or "commercial". However,
many jurisdictions will permit you to work on semi-commercial
wiring if you're supervised by a licensed electrician - if you can
find one willing to supervise.
If you do your own wiring, an important point:
Do it NEAT and WELL! What you really want to aim for is a better
job than an electrician will do. After all, it's your own home,
and it's you or your family that might get killed if you make
a mistake. An electrician has time pressures, has the skills
and knows the tricks of the trade to do a fast, safe job.
In this FAQ we've consciously given a few recommendations that
are in excess of code, because we feel that it's reasonable,
and will impress the inspector.
The inspector will know that you're an amateur. You have to
earn his trust. The best way of doing this is to spend your
time doing as neat a job as possible. Don't cut corners.
Exceed specifications. Otherwise, the inspector may get extremely
picky and fault you on the slightest transgressions.
Don't try to hide anything from the inspector.
Use the proper tools. Ie: don't use a bread knife to strip
wires, or twist wires with your fingers. The inspector
won't like it, and the results won't be that safe. And it
takes longer. And you're more likely to stick a hunk of
12ga wire through your hand that way.
Don't handle house wire when it's very cold (eg: below -10C
or 16F). Thermoplastic house wire, particularly older types
become very brittle.
Subject: What do I need in the way of tools?
First, there's the obvious -- a hammer, a drill, a few
screwdrivers, both straight and Phillips-head. If you're
lucky enough to live in Canada (or find a source of CSA-approved
devices) you need Robertson ("square recess") screwdrivers
(#1 and #2) instead of phillips.
For drilling a few holes, a 3/4" or 1" spade bit and 1/4" or
3/8" electric drill will do. If you're doing a lot, or
are working with elderly lumber, we recommend a 1/2" drill
(right-angle drills are wonderful. Can be rented) and
3/4" or 1" screw-point auger drill bits. These bits pull
you through, so they're much faster and less fatiguing, even
in 90 year old hardwood timbers.
Screw-driver bits are useful for drills, expecially if you
install your electrical boxes using screws (drywall screws
work well).
For stripping wire, use a real wire stripper, not a knife or
ordinary wire cutters. Don't buy the $3 K-mart "combo stripper,
crimper and bottle opener" types. You should expect to pay
$15 to $20 for a good "plier-type" pair. It will have sized
stripping holes, and won't nick or grab the wire - it should
be easy to strip wire with it. One model has a small hole in the
blade for forming exact wire loops for screw terminals. There
are fancier types (autostrip/cut), but they generally aren't
necessary, and pros usually don't use them.
A pair of diagonal side cutter pliers are useful for clipping ends
in constricted places. Don't use these for stripping wire.
You will need linesman pliers for twisting wires for wire nuts.
You should have a pair of needle-nose pliers for fiddling
inside boxes and closing loops, but it's better to form wire
loops with a "loop former hole" on your wire stripper - more
accurate.
If you're using non-metallic cable, get a cable stripper for
removing the sheath. Or, do what some pros do, they nick the
end of the sheath, grab the ground wire with a pair of pliers,
and simply rip the sheath back using the ground wire as a
"zipper", and cut the sheath off. You shouldn't try to strip
the sheath with a knife point, because it's too easy to
slash the insulation on the conductors.
For any substantial amount of work with armored cable, it's well
worth your while to invest in a rotary cable splitter (~US$ 18).
Hack saws are tricky to use without cutting into the wire
or the insulation.
Three-prong outlet testers are a quick check for properly-wired
outlets. About $6. Multimeters tell you more, but are a lot more
expensive, and probably not worth it for most people. A simple
voltage sensor, which can detect potential through an insulated
wire not supplying any devices, is extremely helpful; they cost
about US$ 10 at Radio Shack.
You should have a voltage detector - to check that the wires are
dead before doing work on them. Neon-bulb version are cheap ($2-3)
and work well. If you get more serious, a "audible alarm" type is
good for tracing circuits without a helper. (Though I've been known
to lock the drill on, and hit breakers until the scream stops ;-)
For running wires through existing walls, you need fish tape.
Often, two tapes are needed, though sometimes, a bent hanger or
a length of thin chain will suffice. Fish tapes can be rented.
Electrical tape. Lots of it ;-) Seriously, a good and competent
wiring job will need very little tape. The tape is useful for
wrapping dicy insulation in repair work. Another use is to wrap
around the body of outlets and switches to cover the termination
screws - I don't do this, but drywall contractors prefer it (to
prevent explosions when the drywall knife collides with a live outlet
that has no cover plate).
Subject: What is UL listing?
The UL stands for "Underwriters Laboratory", which is a
insurance industry organization that tests electrical
components and equipment for potential hazards. When something
is UL-listed, that means that the UL has tested the device,
and it meets their requirements for safety - ie: fire or shock
hazard. It doesn't necessarily mean that the device actually does
what it's supposed to, just that it probably won't kill you.
The UL does not have power of law in the U.S. -- you are
permitted to buy and install non-UL-approved devices. However,
insurance policies sometimes have clauses in them that will
limit their liability in case of a claim made in response to
the failure of a non-UL-approved device. Furthermore, in
many situations the NEC will require a device ``listed'' for
some purpose. What they mean is a device that UL has approved.
There is thus the indirect force of law.
Subject: What is CSA approval?
Every electrical device or component must be certified by the
Canadian Standards Association before it can be sold in
Canada. Implicit in this is that all wiring must be done
with CSA-approved materials. They perform testing similar to
the UL (a bit more stringent), except that CSA approval is
required by law.
Again, like the UL, if a fire was caused by non-CSA-approved
equipment, your insurance company may not have to pay the
claim.
In Canada, there is a branch organization of the UL, called ULC
(UL of Canada). ULC does not have power of law, and seems to
be more a liason group between the CSA and insurance
companies.
Subject: Are there any cheaper, easier to read books on wiring?
USA: The following three books were suggested by our readers
Residential Wiring
by Jeff Markell,
Craftsman Books,
Carlsbad CA for $18.25. ISBN 0-934041-19-9.
Practical Electrical Wiring
Residential, Farm and Industrial, Based on the National
Electrical Code ANSI/NFPA 70
Herbert P. Richter and W. Creighton Schwan
McGraw-Hill Book Co.
Wiring Simplified
H. P. Richter and W. C. Schwan
Park Publishing Co.
Try to make sure that the book is based on the latest NEC
revision. Which is currently 1990.
Canada: P.S. Knight authors and publishes a book called
"Electrical Code Simplified". There appears to be a version
published specific to each province, and is very tied into the
appropriate provincial code. It focuses on residential wiring,
and is indispensible for Canadian DIY'ers. It is better to get
this book than the CEC unless you do a lot of wiring (or answer
questions on the net ;-).
It is updated each time the provincial codes are. This book is
available at all DIY and hardware stores for less than C$10.
Subject: Inspections how and what? Why should I get my wiring inspected?
Most jurisdictions require that you obtain a permit and
inspections of any wiring that is done. Amongst other more
mundane bureaucratic reasons (like insurance companies not
liking to have to pay claims), a permit and inspections
provides some assurance that you, your family, your neighbors
or subsequent owners of your home don't get killed or lose
their homes one night due to a sloppy wiring job.
Most jurisdictions have the power to order you to vacate your
home, or order you to tear out any wiring done without a
permit. California, for instance, is particularly nasty about
this.
If fire starts in your home, and un-inspected wiring is at
fault, insurance companies will often refuse to pay the damage
claims.
In general, the process goes like this:
- you apply to your local inspections office or building
department for a permit. You should have a sketch or
detailed drawing of what you plan on doing. This is
a good time to ask questions on any things you're not
sure of. If you're doing major work, they may impose
special conditions on you, require loading
calculations and ask other questions. At this point
they will tell you which inspections you will need.
- If you're installing a main panel, you will need to
have the panel and service connections inspected
before your power utility will provide a connection.
This is sometimes done by the local power authority
rather than the usual inspectors.
- After installing the boxes and wiring, but before
the insulation/walls go up, you will need a
"rough-in" inspection.
- After the walls are up, and the wiring is complete,
you will need a "final inspection".
Subject: My house doesn't meet some of these rules and regulations.
Do I have to upgrade?
In general, there is no requirement to upgrade older dwellings,
though there are some exceptions (ie: smoke detectors in some
cases). However, any new work must be done according to the
latest electrical code. Also, if you do ``major'' work, you
may be required to upgrade certain existing portions or all
of your system. Check with your local electrical inspector.
Subject: A word on voltages: 110/115/117/120/125/220/240 (NEW)
One thing where things might get a bit confusing is the
different numbers people bandy about for the voltage of
a circuit. One person might talk about 110V, another 117V
or another 120V. These are all, in fact, exactly the same
thing... In North America the utility companies are required
to supply a split-phase 240 volt (+-5%) feed to your house.
This works out as two 120V legs. However since there are
resistive voltage drops in the house wiring, it's not
unreasonable to find 120V has dropped to 110V or 240V has dropped
to 220V by the time the power reaches a wall outlet. Especially
at the end of an extension cord or long circuit run. For a number
of reasons, some historical, some simple personal orneryness,
different people choose call them by slightly different numbers.
This FAQ has chosen to be consistent with calling them "110V" and
"220V", except when actually saying what the measured voltage will
be. Confusing? A bit. Just ignore it.
| 208V is *not* the same as 240V. 208V is the voltage between
| phases of a 3-phase "Y" circuit that is 120V from neutral to any
| hot. 277V is the voltage between hot and neutral of a 3-phase
| "Y" circuit that's 480V between phases.
Subject: What does an electrical service look like?
There are logically four wires involved with supplying the
main panel with power. Three of them will come from the utility
pole, and a fourth (bare) wire comes from elsewhere.
The bare wire is connected to one or more long metal bars pounded
into the ground, or to a wire buried in the foundation, or sometimes
to the water supply pipe (has to be metal, continuous to where
the main water pipe entering the house. Watch out for galvanic
action conductivity "breaks" (often between copper and iron pipe)).
This is the "grounding conductor". It is there to make sure that
the third prong on your outlets is connected to ground. This wire
normally carries no current.
One of the other wires will be white (or black with white or
yellow stripes, or sometimes simply black). It is the neutral wire.
It is connected to the "centre tap" (CEC; "center tap" in the
NEC) of the distribution transformer supplying the power. It
is connected to the grounding conductor in only one place (often
inside the panel). The neutral and ground should not be connected
anywhere else. Otherwise, weird and/or dangerous things may happen.
Furthermore, there should only be one grounding system in
a home. Some codes require more than one grounding electrode.
These will be connected together, or connected to the neutral
at a common point - still one grounding system. Adding additional
grounding electrodes connected to other portions of the house
wiring is unsafe and contrary to code.
If you add a subpanel, the ground and neutral are usually
brought as separate conductors from the main panel, and are
not connected together in the subpanel (ie: still only one
neutral-ground connection). However, in some situations
(certain categories of separate buildings) you actually do
have to provide a second grounding electrode - consult your
inspector.
The other two wires will usually be black, and are the "hot"
wires. They are attached to the distribution transformer as
well.
The two black wires are 180 degrees out of phase with each
other. This means if you connect something to both hot wires,
the voltage will be 220 volts. If you connect something to the
white and either of the two blacks you will get 110V.
Some panels seem to only have three wires coming into them.
This is either because the neutral and ground are connected
together at a different point (eg: the meter or pole) and one
wire is doing dual-duty as both neutral and ground, or in some
rare occasions, the service has only one hot wire (110V only
service).
Subject: What is a circuit?
Inside the panel, connections are made to the incoming wires.
These connections are then used to supply power to selected
portions of the home. There are three different combinations:
1) one hot, one neutral, and ground: 110V circuit.
2) two hots, no neutral, and ground: 220V circuit.
3) two hots, neutral, and ground: 220V circuit + neutral,
and/or two 110V circuits with a common neutral.
(1) is used for most circuits supplying receptacles and
lighting within your house. (3) is usually used for supplying
power to major appliances such as stoves, and dryers - they
often have need for both 220V and 110V, or for bringing several
circuits from the panel box to a distribution point. (2) is
usually for special 220V motor circuits, electric heaters, or
air conditioners.
[Note: In the US, the NEC frequently permits a circuit similar
to (2) be used for stoves and dryers - namely, that there
are two hot wires, and a wire that does dual duty as neutral
and ground, and is connected to the frame as well as providing
the neutral for 110V purposes - three prong plugs instead
of four (*only* for stoves/dryers connected to the main panel.
When connected to most sub-panels, 4 prong plugs and receptacles
are required). In our not-so-humble opinion this is crazy, but
the NFPA claims that this practice was re-evaluated for the 1992 NEC,
and found to be safe. Check your local codes, or inquire as to
local practice -- there are restrictions on when this is
permissible.]
(1) is usually wired with three conductor wire: black for hot,
white for neutral, and bare for grounding.
(2) and (3) have one hot wire coloured red, the other black, a
bare wire for grounding, and in (3) a white wire for neutral.
You will sometimes see (2) wired with just a black, white and ground
wire. Since the white is "hot" in this case, both the NEC and CEC
requires that the white wire be "permanently marked" at the ends
to indicate that it is a live wire. Usually done with paint, nail
polish or sometimes electrical tape.
Each circuit is attached to the main wires coming into the
panel through a circuit breaker or fuse.
There are, in a few locales, circuits that look like (1), (2)
or (3) except that they have two bare ground wires. Some places
require this for hot tubs and the like (one ground is "frame ground",
the other attaches to the motor). This may or may not be an
alternative to GFCI protection.
Subject: "grounding" versus "grounded" versus "neutral".
According to the terminology in the CEC and NEC, the
"grounding" conductor is for the safety ground, i.e., the green
or bare wire. The word "neutral" is reserved for the white when
you have a circuit with more than one "hot" wire. Since the white
wire is connected to neutral and the grounding conductor inside the
panel, the proper term is "grounded conductor". However, the
potential confusion between "grounded conductor" and "grounding
conductor" can lead to potentially lethal mistakes - you should
never use the bare wire as a "grounded conductor" or white wire
as the "grounding conductor", even though they are connected
together in the panel.
[But not in subpanels - subpanels are fed neutral and ground
separately from the main panel. Usually.]
In the trade, and in common usage, the word "neutral" is used
for "grounded conductor". This FAQ uses "neutral" simply to
avoid potential confusion. We recommend that you use "neutral"
too. Thus the white wire is always (except in some light
switch applications) neutral. Not ground.
Subject: What does a fuse or breaker do? What are the differences?
Fuses and circuit breakers are designed to interrupt the power
to a circuit when the current flow exceeds safe levels. For
example, if your toaster shorts out, a fuse or breaker should
"trip", protecting the wiring in the walls from melting. As
such, fuses and breakers are primarily intended to protect the
wiring -- UL or CSA approval supposedly indicates that the
equipment itself won't cause a fire.
Fuses contain a narrow strip of metal which is designed to melt
(safely) when the current exceeds the rated value, thereby
interrupting the power to the circuit. Fuses trip relatively
fast. Which can sometimes be a problem with motors which have
large startup current surges. For motor circuits, you can use
a "time-delay" fuse (one brand is "fusetron") which will avoid
tripping on momentary overloads. A fusetron looks like a
spring-loaded fuse. A fuse can only trip once, then it must be
replaced.
Breakers are fairly complicated mechanical devices. They
usually consist of one spring loaded contact which is latched
into position against another contact. When the current flow
through the device exceeds the rated value, a bimetallic strip
heats up and bends. By bending it "trips" the latch, and the
spring pulls the contacts apart. Circuit breakers behave
similarly to fusetrons - that is, they tend to take longer to
trip at moderate overloads than ordinary fuses. With high
overloads, they trip quickly. Breakers can be reset a finite
number of times - each time they trip, or are thrown
when the circuit is in use, some arcing takes place, which
damages the contacts. Thus, breakers should not be used in
place of switches unless they are specially listed for the
purpose.
Neither fuses nor breakers "limit" the current per se. A dead
short on a circuit can cause hundreds or sometimes even
thousands of amperes to flow for a short period of time, which
can often cause severe damage.
Subject: Breakers? Can't I use fuses?
Statistics show that fuse panels have a significantly higher
risk of causing a fire than breaker panels. This is usually
due to the fuse being loosely screwed in, or the contacts
corroding and heating up over time, or the wrong size fuse
being installed, or the proverbial "replace the fuse with a
penny" trick.
Since breakers are more permanently installed, and have better
connection mechanisms, the risk of fire is considerably less.
Fuses are prone to explode under extremely high overload. When
a fuse explodes, the metallic vapor cloud becomes a conducting
path. Result? from complete meltdown of the electrical panel,
melted service wiring, through fires in the electrical
distribution transformer and having your house burn down.
Breakers don't do this.
Many jurisdictions, particularly in Canada, no longer permit
fuse panels in new installations. The NEC does permit new
fuse panels in some rare circumstances (requiring the special
inserts to "key" the fuseholder to specific size fuses)
Some devices, notably certain large air conditioners, require fuse
protection in addition to the breaker at the panel. The fuse
is there to protect the motor windings from overload. Check the
labeling on the unit. This is usually only on large permanently
installed motors. The installation instructions will tell you
if you need one.
Subject: What size wire should I use?
For a 20 amp circuit, use 12 gauge wire. For a 15 amp circuit,
you can use 14 gauge wire (in most locales). For a long run,
though, you should use the next larger size wire, to avoid
voltage drops. 12 gauge is only slightly more expensive than
14 gauge, though it's stiffer and harder to work with.
Here's a quick table for normal situations. Go up a size for
more than 100 foot runs, when the cable is in conduit, or
ganged with other wires in a place where they can't dissipate
heat easily:
Gauge Amps
14 15
12 20
10 30
8 40
6 65
We don't list bigger sizes because it starts getting very dependent
on the application and precise wire type.
Subject: Where do these numbers come from?
There are two considerations, voltage drop and heat buildup.
The smaller the wire is, the higher the resistance is. When
the resistance is higher, the wire heats up more, and there is
more voltage drop in the wiring. The former is why you need
higher-temperature insulation and/or bigger wires for use in
conduit; the latter is why you should use larger wire for long
runs.
Neither effect is very significant over very short distances.
There are some very specific exceptions, where use of smaller
wire is allowed. The obvious one is the line cord on most
lamps. Don't try this unless you're certain that your use fits
one of those exceptions; you can never go wrong by using larger
wire.
Subject: What does "14-2" mean?
This is used to describe the size and quantity of conductors
in a cable. The first number specifies the gauge. The second
the number of current carrying conductors in the wire - but
remember there's usually an extra ground wire. "14-2" means
14 gauge, two insulated current carrying wires, plus bare ground.
-2 wire usually has a black, white and bare ground wire. Sometimes
the white is red instead for 220V circuits without neutral. In
the latter case, the sheath is usually red too.
-3 wire usually has a black, red, white and bare ground wire.
Usually carrying 220V with neutral.
Subject: What is a "wirenut"/"marrette"/"marr connector"? How are they
used?
A wire nut is a cone shaped threaded plastic thingummy that's used
to connect wires together. "Marrette" or "Marr connector"
are trade names. You'll usually use a lot of them in DIY wiring.
In essence, you strip the end of the wires about an inch, twist them
together, then twist the wirenut on.
Though some wirenuts advertise that you don't need to twist the
wire, do it anyways - it's more mechanically and electrically
secure.
There are many different sizes of wire nut. You should check
that the wire nut you're using is the correct size for the
quantity and sizes of wire you're connecting together.
Don't just gimble the wires together with a pair of pliers or
your fingers. Use a pair of blunt nose ("linesman") pliers,
and carefully twist the wires tightly and neatly. Sometimes
it's a good idea to trim the resulting end to make sure it
goes in the wirenut properly.
Some people wrap the "open" end of the wirenut with electrical
tape. This is probably not a good idea - the inspector may
tear it off during an inspection. It's usually done because
a bit of bare wire is exposed outside the wire nut - instead
of taping it, the connection should be redone.
Subject: What is a GFI/GFCI?
A GFCI is a ``ground-fault circuit interrupter''. It measures
the current current flowing through the hot wire and the
neutral wire. If they differ by more than a few milliamps, the
presumption is that current is leaking to ground via some other
path. This may be because of a short circuit to the chassis of
an appliance, or to the ground lead, or through a person. Any
of these situations is hazardous, so the GFCI trips, breaking
the circuit.
GFCIs do not protect against all kinds of electric shocks. If,
for example, you simultaneously touched the hot and neutral
leads of a circuit, and no part of you was grounded, a GFCI
wouldn't help. All of the current that passed from the hot
lead into you would return via the neutral lead, keeping the
GFCI happy.